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. The general theory of oscillations of viscoelastic shells is

4 described in the present paper. The material of the shell is considered

isotropic, homogenous, and dependent upon the linear relationship between

three tensors — stiresses, stress velocity and deformation velocity.

208 04 A2rriows Lyava-Kirchhoff ﬁypotheses are valid for the shell. The shell is conside-
' red sloping, the shifting of its surface's median part being small.
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A system of differential equations of the problem is obtained. It is
solved in the case of a circular cylindrical shell flown around by a super-

! sonmic gas stream along its genetratrix.
1. Visoelastic sloping shells. The equilibrium equations of

the shell's small element have the form
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Here Ny, NoyTi=T:=T, Q1, Q2 My, Mo, h =He=H are the specific
forces and moments; X, Y, Z are the components of the external surface

stresses, respectively along the orthogonal axes x, ¥, 2 . Ry R2 are
the main curvature radiuses. The system of coordinates coincides with
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“~. the main directions on the median surface.
If 061(2), 02(2), m2{2)° are the stresses, we have

A g - P

L ke ; i
“'M:Sm@a Ne=\ ©02(2)dz, T:Sm@k’ o
2o ~iie by "
P i :/2 (1,2}
S Tz () dz. %

—hfs

e o |
Mi= S oi(z) zdz, M= | ®(2dz, H=

—hi2

[}




For a linear homogenous and isotropic Maxwell medium at a
plane state of stress we have
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where & (z), £,(z) are the relative deformations of the surface %

= const
along the axes x and y; yla(z) is the antle of surface's shift (z
K, =

= con.)
*/sp + A is the volume viscosity; g ,A are the coefficients of hardness:
G is the shift module;X, = 2G (I — v)/3 (1 — 2v);j is the Poisson coefficient.
The point designates the different:.atiop along the time t. At the same time
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The Kirchhoff- Lyav hypotheses lead. for deformations to the
expressions :

a1z =8 —2u e (2) = 82— z%s, y12 (2) = yi2 — 2202, (1,6) !

whereupon the relative deformations E’l and &. , and the shift angle Y12

of the median surface for a sloping shell at small shifts have the form
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Introducing (1.5) into {(1.2), and bearing in mind (1.6), we

shall obtain
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Now, introducing (1.6) into (1.5), multiplying both terms of the

expression by ds, and then by 2dz, and integrating the result along the
thickness of the shell, we find
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From the first three relations (1.7), we obtain the deformation

consistency equaticn
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. and upon integrating in time, we obtain the deformation velocity comsistency

-
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The first two equilibrium eguations (1.1) are satisfied by the
fofce function F, at X = Y = O, determined as
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We now introduce the fourth and fifth equations (1.1) into the
third, and substitute M;, My and H their values according to relatioms (1.8)
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and for N; and N, their expressions through the force function (1.12).
The first three dependences (1.9) are then introduced into (1.11), tak:.ng
into account (1.12), As a result, we obtain
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It must be understood that Z of (1.13) represents the transverse
load introduced, which in case of a shell with the initial conditioms
and the action of the external medium is
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where Y is the specific weight of the material of the shell ; g - gravitation

acceleration ; Pc is the pressure of the medium on the surface of the shell,

From (1+13) =(1:1%) it is possible to obtain a single differen-
tial equation related to the deflection
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If we now introduce a new function f.b by means of
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the equation (1.14) is identically satisfied, and (1 13) will take the form
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2. Oscillations of a Cylindrical Shell in Supersonic Gas Flow.

Let a cylindrical shell be submitted to an internal transverse
pressure p, while being flown about by a supersonic gas stream from the
outside. We then shall have
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Here q is the complementary pressure in the gas flow on account
of the deflection of the shell from the unperturbed cylindrical form at
oscillations, and it corresponds to the theory of a stationary supersonic
flowy; U is the velocity of the unperturbed flow; M = U/c¢; ¢ is the
velocity of sound propagation in the unpesgurbed flow ; f is the density of
the flow.

Let us introduce (2.1) into the equations (1.13 — (1.14), and let

us search for the solution of these equations in the form of traveling waves- - -

W = woei@t~#x) cos np, F = Fociw—h) cos ng, @2

where ,, F, k are constents § n is the number of half-waves in a circular
direction § @ is the angular frequency of the oscillations of the shell in
the flow.

The substitution of (2.2) into (1.13) — (1.14) leads to the
following equation for the introduced frequency w* of oscillations of the
shell in the flow:
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The frequency introduced in (2.3) is a complex magnitude.
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